Comparison of Nml and Bayesian Scoring Criteria for Learning Parsimonious Markov Models

نویسندگان

  • Ralf Eggeling
  • Teemu Roos
  • Petri Myllymäki
  • Ivo Grosse
چکیده

Parsimonious Markov models, a generalization of variable order Markov models, have been recently introduced for modeling biological sequences. Up to now, they have been learned by Bayesian approaches. However, there is not always sufficient prior knowledge available and a fully uninformative prior is difficult to define. In order to avoid cumbersome cross validation procedures for obtaining the optimal prior choice, we here adapt scoring criteria for Bayesian networks that approximate the Normalized Maximum Likelihood (NML) to parsimonious Markov models. We empirically compare their performance with the Bayesian approach by classifying splice sites, an important problem from computational biology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Bayesian Network Classifiers for Credit Scoring Using Markov Chain Monte Carlo Search

In this paper, we will evaluate the power and usefulness of Bayesian network classifiers for credit scoring. Various types of Bayesian network classifiers will be evaluated and contrasted including unrestricted Bayesian network classifiers learnt using Markov Chain Monte Carlo (MCMC) search. The experiments will be carried out on three real life credit scoring data sets. It will be shown that M...

متن کامل

Learning Essential Graph Markov Models From Data

In a model selection procedure where many models are to be compared, computational efficiency is critical. For acyclic digraph (ADG) Markov models (aka DAG models or Bayesian networks), each ADG Markov equivalence class can be represented by a unique chain graph, called an essential graph (EG). This parsimonious representation might be used to facilitate selection among ADG models. Because EGs ...

متن کامل

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

Gibbs sampling for parsimonious Markov models with latent variables

Parsimonious Markov models have been recently developed as a generalization of variable order Markov models. Many practical applications involve a setting with latent variables, with a common example being mixture models. Here, we propose a Bayesian model averaging approach for learning mixtures of parsimonious Markov models that is based on Gibbs sampling. The challenging problem is sampling o...

متن کامل

Scoring functions for learning Bayesian networks

The aim of this work is to benchmark scoring functions used by Bayesian network learning algorithms in the context of classification. We considered both information-theoretic scores, such as LL, AIC, BIC/MDL, NML and MIT, and Bayesian scores, such as K2, BD, BDe and BDeu. We tested the scores in a classification task by learning the optimal TAN classifier with benchmark datasets. We conclude th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012